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Quantum vortices in systems obeying a generalized exclusion principle
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The paper deals with a planar particle system obeying a generalized exclusion priE&)pénd governed,
in the mean field approximation, by a nonlinear Sclimger equation. We show that the EP involves a
mathematically simple and physically transparent mechanism, which allows the genesis of quantum vortices in
the system. We obtain in a closed form the shape of the vortices and investigate its main physical properties.
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In literature experimental evidence has been presented gilest interaction, other interactions can be considered as, for
formation of quantized vortex structures in different macro-instance, the one introduced by EIP to simulate an attraction
scopic quantum systems. Vortices have been observed bo#mong the particles. Analogously, in the case of superfluids
in Bose (Bose-Einstein condensate of alkali atom clguds or semiconductors Fermionic systems, the repulsive interac-
and in Fermi He-A superfluids, heavy fermion supercon- tion among the particles originated from the Fermi-Dirac sta-
ductors UP§ and U, o;Thy odB€12) systems1-6]. Actually, tistics can be simulated by the EIP wik<0. In condensed
there exist different theoretical models admitting stationarymatter the motion of the couple electron hole in a semicon-
solutions of vortex typé7—17). It is apparent that the vortex ductor can be described again by EIP. In fact, while electrons
type solution is imposed by the nonlinearities introduced inand holes are fermions, and together can be considered as
the particular model adopted. For instance, by considering 8xcited states behaving differently from a fermion or a bo-
nonrelativistic matter system, one can construct differenon. Moreover, in nuclear physics the interaction among the
models starting from nonlinear Scliiager equations fermionic valence nucleons outside the core produces pairs
(NLSES or from the gauged NLSEs in the frame of a Max- Of correlated nucleons that can be approximated as particles
well or Chern-Simons theory. with a behavior intermediate between fermionic and bosonic

Principal goal of the present work is to show that thereones. This nuclear statguasideuteron statean be viewed
exists a mathematically simple and physically transparengs a particle system that obeys to EIP.
mechanism, imposed by the generalized exclusion principle The dynamics of the canonical quantum system obeying
(EP), which allows the genesis of quantum vortices in planatthe EIP is governed by the following NLSE:
nonrelativistic particle systems.

Since 1932, it was clear that the effects due to the statis- 0y h? ) ) )
tics and imposed to a system of free fermions by the Pauli ih—=— S AT Wp. )+ iWp. )y +Vy, (1)
exclusion principle can be simulated by a repulsive potential
in the coordinate spadd8]. In the same way for bosons, an where the real and imaginary parts of the nonlinearity are
attractive potential can simulate the statistical behavior of thgjiyen respectively by:
system. After 1940, in different works, particle systems

obeying to statistics, which are different from the standard m i 2
Bose-Einstein and Fermi-Dirac ones, have been considered W(p,j)ZK—( ) (2
[19-27. p\1t+kp

Recently, it has been studied a many body quantum sys- )
tem obeying a generalized exclusion-inclusion principle Wi i)= — i Ip 3
(EIP) [23—28. The peculiar property of this system is that (p.)) K2p 1+kp)’ 3

the EIP introduces an attractive or repulsive potential in the

coordinate space and can simulate the intermedis®veen  The free paramete is a constant that takes into account the
bosonic and fermionicbehavior of the system. We consider intensity of the exclusion-inclusion statistical effects. It is

some examples of real physical systems where EIP can hgasy to verify that the system described by B¢.obeys the
usefully applied. The Bose-Einstein condensation originategontinuity equation

from an attraction of statistical natufBose-Einstein statis-

tics) among the particles. In several systems the Bose- ap

Einstein condensation is studied by means of a cubic NLSE E+Voj=0, (4)
that describes in mean field approximation an attractive in-

teraction between two bodies. In place of the cubic and sim- ) . L
wherep=||%, while the quantum curreijtis given by
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Equation(4) assures the conservation of the particle number VS
N= [ pd’ of the system. v=(1+Kp) . 9
We discuss now briefly the origin of the model described
by Eq. (1). We start by considering the following nonlinear Tpe guantum velocity can be expressed in terms of the

Fokker-Planck equatiof?3,24; Clebsch potential§,\, u throughmv=VS+\V . It results
5 vs that the EIP imposes the choiee=xp and u=S for the
P _ Clebsch potentials. Now, we define the vorticidy of the
—+V.|—p(1l+ +D = j :
at v m p(1txp)+DVp =0, © system, throughw=V Xv and obtain

being VS/m the drift velocity andD the diffusion coeffi-
cient. In the casex=0 andD =0, the above Fokker-Planck
equation reduces to the well-known continuity equationgfor
and the linear quantum mechanics can be obtained if we uferom Eq.(10), it results that Eq(1) describes a vorticose
the ansatzy=p*2exp(S/#). In Ref.[29], it has been consid- system. In the present contribution, we will consider the pla-
ered the case=0, D+#0 and starting from Eq6) a new nar, static vortex solutions of Eql) in the casex=—¢
NLSE was obtained. Differently, starting from E@), after <0, when EIP is reduced to an EP. By introducing the polar
posingx#0 andD =0, Eq.(1) can be obtained. coordinates = \/x?>+y? and §= arctang/x) in the plane, we
The introduction in Eq(1) of the factor 1+ xp originates  search for solutions of Eq(l) in which S=S(6) and p
from the presence of the EIP and allows us to take into=p(r). The continuity equation imposeés=#né and con-
account many particle quantum effects. In fact, the transitiorsequently we writa) as
probability from the sitex to x" is defined asm(t,x—X") ‘
=r(t,x,x)p(t,X)[ 1+ kp(t,x")] with r(t,x,x’) the transi- Y(r,0)=p(r)"%"’. (11
tion rate. The transition probability depends on the particle _ ) .
population p(t,x) of the starting poinx, and also on the N€ parameten must be integer in order to makg given
populationp(t,x’) of the arrival pointx’. For k#0 the EIP _by Eq. (11),2a single value function. In the following, we
holds and the parameter quantifies how much the particle IMP0Se/pd™x=N, and thereforg)(«)=0. Let us note that
kinetics is affected by the particle population of the arrival Ed- (1) is not Galilei invarian{28] so that traveling solutions
point. If x>0 the 7(t,x—x') introduces an inclusion prin- cannot be obtained by boosting static solutions of @&g.

ciple. In fact the population at the arrival poixit stimulates The quantum velocity for the vortices(11) becomes

the transition, and the transition probability increases linearly A n
with p(t,x’). In t_he case_K<O _the_ a(t,x—x") tgkes into v=——(1—¢&p)@,, (12)
account the Pauli exclusion principle. If the arrival pokit mr
is empty,p(t,x’)=0, and thew(t,x—x") depends only on . . .
the population of the starting point. If the arrival site is popu-Whereeﬁ is the unitary vector orthogonal to the position vec-
lated 0< p(t,X') < pray, and the transition is inhibited. The ©F '~ (X.y). After integration of Eq(12) on the circley,
range of values the parametercan assume is bounded by With center at the vortex core and with a radRs-<, we
the condition thatm(t,x—x') be real and positive, as obtain the following relevant property:
r(t,x,x") is. Thus we conclude that= — 1/p -

The form of the nonlinearityV(p.j) in Eq. (1) is imposed m fﬁ v-dl=27in, (13)
by the continuity equatioid), while the form ofW(p,j) is Y
imposed by the requirement of the canonicity of the system.
The Hamiltonian density of the systeft) is given by which justifies the name of vorticity indes. The vorticity

w= wg&, of the system is given by

K
w=—VpxVs. (10)

hZ
H=5—|Vy|>+U_ +Vp, 7 27hin A nd
2m EP 0= 8%(r)— ———p, (14)
mr dr
being L - .
and taking into accouni(e°) =0, it is easy to verify that the
(VS)2 total vorticity depends exclusively on the behavior of the
U_ =«kp? , (8)  vortex core
EIP 2m
. . . ) h
the nonlinear potential introduced by the EIP. In R&f7] it wd XZZW”E' (15
has been shown that the systét) admits one-dimensional
solitons. - - . _
. . =V X
Following the standard procedure of the linear quantumThe definition of the vorticityw=V X v, imposes the relation
mechanics, we define the quantum velogitthroughj=vp.
Taking into account Eq(5) and writing ¢ in terms of the j wd?x= fﬁ v-dl, (16)
1/2 Y.

hydrodynamic variableg= p~“exp(S/h), we have
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which can be easily verified by comparing Eq$3) and a

(15). y(p)=—+1-¢p, (29
The angular momentum of the vortex, which is a vector P

orthogonal to the vgrtex plane, can be calculated as meageing« an integration constant. Combining Eg3) and Eq.

value of the operatdr,= —ifd/ 96 and assumes the follow- (25), we arrive at the following first order ordinary differen-

ing quantized value: tial equation for the shape of the vortex:
L,=nN#, 1 dp)?
: 0 (E) — ap+ p?(1- £p). (26

which does not depend on the parameiter
We can calculate now the complex nonlineaNty+i)V  All the physical solutions of Eq26), whatever the value of
in Eq. (1) for the vortex given by Eq(11). The nonlinearity the parametex € R, must be nonsingular, non-negative, and

becomes a real one and E@) reduces to normalizable.
The HamiltonianH = [ Hd?x of the system can be calcu-
J 72 #2 &én? lated starting from Eq(7) and the expressiofl9) for Ugp:
iﬁ&—ltﬂz—%Alﬂ—Hg—zpw'f—Vlﬂ. (18) g q p EP
r =l e @
=—| | 5=+ —=p(l- X.
Equation(18) contains a nonlinearity very close to the one of m 2r° r2p P

cubic NLSE and describes a canonical quantum system with ) o
a Hamiltonian density given by Eq7), where the nonlinear e must chooser=0 in order to have a finite value of the
potential introduced by the EP assumes the form Hamiltonian. After integration on the variabk we obtain
the following simple expression for the Hamiltonian:
h? én?
_ e 2, (19

EP 2m 2 H=2wnﬁf jdr, (28
0

~ As regards_to the spatial shape (_)f the vowﬁewx_p(r), We  peingj=(An/mr)p(1l—&p) the value of the currerjt=j&,
insert Eq.(11) into Eq.(18), and obtain the following second given by Eq.(5). Finally, also the differential equation for

order ordinary differential equation: the vortex shape assumes a very simple form
1 .d{ dp\ 1/1dp\? 2n? Lo 4mV o dp)z_ 21— ) 29
parltar) "2\ par —r—z( - fP)—ﬁ (r)=0. 4z —P(1=¢p),

20
20 and can be easily integrated, obtaining the vortex profile in

In the following, we are interested to study the free vorticesn explicit form
V=0. After introducing the dimensionless variable

Af(r\™ [ry\" 2
p()==||—| +|— (30)
r El\r, r
z=2nlog —, (21
Mn Therefore, the wave function of the vortex becomes
wherer , is an arbitrary constant, E¢20) becomes o [/ p\n [r.\n-1
o(r, 6)=—[<—) + = expiingd). (31
2 d% (1 do 2+2§ 1=0 22) Jellnl AT
pdZ \pdz P '

The free parameter,, which absorbs the integration con-
) - . stant related to Eq29), can be calculated from the normal-
Now we consider the auxiliary functiop(p) ization condition 27 p(r)rdr=N and assumes the value

1dp)2 L —
pprosg (23 = in—
p dz =5 &N sin [ (32

which, taking into account E(22), obeys the differential wheren is an integer number witm=2 in order to have

y(p)=

equation normalizable profiles for the vortices. The two vortex corre-
sponds to the ground state of the system. The paramgter
QJF y }(1_25 )=0 (24) represents the distance from the vortex core to the point in
dp p »p p)=5- which p assumes its maximum valuep(r,)=¢&"1. We

have, Vr=0 that O<p<¢!, in agreement with the EP.
The functiony(p) after integration of Eq(24) assumes the From Egs.(14) and(30) we obtain the following expression
form for the vorticity:
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FIG. 1. Plot of the dimensionless quantum velocity FIG. 3. Plot of the dimensionless profifp versus the dimen-
= vmr, /% with r,= N/ 7 versus the dimensionless distance from Sionless distance from the vortex care=r/r with rp= VEN/
the vortex core ' =t/r, for the vortices withn=2,4,6,8,10. for the vortices withn=2,4,6,8,10.

2hn0 8n2% [ r \2(0—1) r\2n shows the dimensionless profifp versusr’ for the same
0= 82(r)— 3 (_) [1—(—) } vortices of the previous figures. Finally, a 3D representation
m mry \fn Tn of the profile £&p for the ground vortexn=2 in the 2D-
[\ 2n-3 dimensionless spacex(=x/r,, y'=ylr,) is reported in
% 1+(_) (33 Figure 4.
In The energye=H of then vortex can be calculated easily

Figure 1 shows the plot of the dimensionless quantum velocby substituting Eq(30) into Eq. (28) and performing the

) ) . o integration
ity ' =vmr,/A with r,=/&N/m, obtained by combining

Egs. (12) and (30), versus the dimensionless distance from

the vortex core ' =r/r, for the vortices withn=2,4,6,8,10.

We observe that is equal to zero for =r,, wherep reaches

its maximum value. Figure 2 reports the behavior of the non-

singular part of the dimensionless vorticity’zwmrglﬁ,
given by Eq.(33) for the same vortices of Fig. 1. Figure 3

h2k
E=|n|—, k¥*=—. (34)

The energy of the system results to be quantized and the
energy spectrum lower bounded.
We recall that the family of the vorticg80) is related to

T T T
104 ] the vorticesp (r) of Ref. [12] throughp(r)mrzpw(r). We
remark that the vorticespjp(r) are obtained as self-dual
static solutions of a Chern-Simons model and correspond to

5 . the same energy state with energy equal to zero. On the

(0)
‘s;;;;;;;v;;;'e
0 T
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FIG. 2. Plot of the nonsingular part of the dimensionless vortic-

ity w’=wmr§/ﬁ with r,=&éN/7 versus the dimensionless dis- FIG. 4. 3D representation of the dimensionless prdfildor the
tance from the vortex core’=r/r, for the vortices withn ground vortex n=2 in the 2D-dimensionless space:x’(
=2,4,6,8,10. =XIr,, y' =ylry) with r,=éN/ .
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contrary, for the vortex family30), we have that any vortex admits self-dual static nontopological vortex solutions with
corresponds to a different state of the system whose energy r2ro energy and linear momentum. The expressions of the
given by Eq.(34). main physical quantities associated to these solutions are ob-

We conclude by noting that very recenfB0], it has been
considered a generalization of the present médescribing
neutral particles that obey the Blin the cases of nonrela-

tained. The electric charge and the angular momentum are
derived analytically, while the shape, together with the elec-
tric and magnetic fields of the vortex, are obtained numeri-

field obeying the EIP is minimally coupled to a gauge field yation of the Jackiw and Pi ongl2], performed by the

whose dynamics are described within the frame of th

Chern-Simons picture. The model is a canonical one an

arameter that takes into account the EIP.
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