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Quantum vortices in systems obeying a generalized exclusion principle
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The paper deals with a planar particle system obeying a generalized exclusion principle~EP! and governed,
in the mean field approximation, by a nonlinear Schro¨dinger equation. We show that the EP involves a
mathematically simple and physically transparent mechanism, which allows the genesis of quantum vortices in
the system. We obtain in a closed form the shape of the vortices and investigate its main physical properties.
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In literature experimental evidence has been presente
formation of quantized vortex structures in different mac
scopic quantum systems. Vortices have been observed
in Bose ~Bose-Einstein condensate of alkali atom cloud!
and in Fermi (3He-A superfluids, heavy fermion superco
ductors UPt3 and U0.97Th0.03Be13) systems@1–6#. Actually,
there exist different theoretical models admitting station
solutions of vortex type@7–17#. It is apparent that the vorte
type solution is imposed by the nonlinearities introduced
the particular model adopted. For instance, by considerin
nonrelativistic matter system, one can construct differ
models starting from nonlinear Schro¨dinger equations
~NLSEs! or from the gauged NLSEs in the frame of a Ma
well or Chern-Simons theory.

Principal goal of the present work is to show that the
exists a mathematically simple and physically transpar
mechanism, imposed by the generalized exclusion princ
~EP!, which allows the genesis of quantum vortices in plan
nonrelativistic particle systems.

Since 1932, it was clear that the effects due to the sta
tics and imposed to a system of free fermions by the P
exclusion principle can be simulated by a repulsive poten
in the coordinate space@18#. In the same way for bosons, a
attractive potential can simulate the statistical behavior of
system. After 1940, in different works, particle system
obeying to statistics, which are different from the stand
Bose-Einstein and Fermi-Dirac ones, have been consid
@19–22#.

Recently, it has been studied a many body quantum
tem obeying a generalized exclusion-inclusion princi
~EIP! @23–28#. The peculiar property of this system is th
the EIP introduces an attractive or repulsive potential in
coordinate space and can simulate the intermediate~between
bosonic and fermionic! behavior of the system. We consid
some examples of real physical systems where EIP ca
usefully applied. The Bose-Einstein condensation origina
from an attraction of statistical nature~Bose-Einstein statis
tics! among the particles. In several systems the Bo
Einstein condensation is studied by means of a cubic NL
that describes in mean field approximation an attractive
teraction between two bodies. In place of the cubic and s
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plest interaction, other interactions can be considered as
instance, the one introduced by EIP to simulate an attrac
among the particles. Analogously, in the case of superflu
or semiconductors Fermionic systems, the repulsive inte
tion among the particles originated from the Fermi-Dirac s
tistics can be simulated by the EIP withk,0. In condensed
matter the motion of the couple electron hole in a semic
ductor can be described again by EIP. In fact, while electr
and holes are fermions, and together can be considere
excited states behaving differently from a fermion or a b
son. Moreover, in nuclear physics the interaction among
fermionic valence nucleons outside the core produces p
of correlated nucleons that can be approximated as part
with a behavior intermediate between fermionic and boso
ones. This nuclear state~quasideuteron state! can be viewed
as a particle system that obeys to EIP.

The dynamics of the canonical quantum system obey
the EIP is governed by the following NLSE:

i\
]c

]t
52

\2

2m
Dc1W~r,j!c1 iW~r,j!c1Vc, ~1!

where the real and imaginary parts of the nonlinearity
given respectively by:

W~r,j!5k
m

r S j

11kr D 2

, ~2!

W~r,j!52k
\

2r
“•S jr

11kr D . ~3!

The free parameterk is a constant that takes into account t
intensity of the exclusion-inclusion statistical effects. It
easy to verify that the system described by Eq.~1! obeys the
continuity equation

]r

]t
1“• j50, ~4!

wherer5ucu2, while the quantum currentj is given by

j52
i\

2m
~11kr!~c*“c2c“c* !. ~5!
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Equation~4! assures the conservation of the particle num
N5*rddx of the system.

We discuss now briefly the origin of the model describ
by Eq. ~1!. We start by considering the following nonlinea
Fokker-Planck equation@23,24#:

]r

]t
1“•F“S

m
r~11kr!1D“rG50, ~6!

being “S/m the drift velocity andD the diffusion coeffi-
cient. In the case,k50 andD50, the above Fokker-Planc
equation reduces to the well-known continuity equation for
and the linear quantum mechanics can be obtained if we
the ansatzc5r1/2exp(iS/\). In Ref. @29#, it has been consid
ered the casek50, D5” 0 and starting from Eq.~6! a new
NLSE was obtained. Differently, starting from Eq.~6!, after
posingk5” 0 andD50, Eq. ~1! can be obtained.

The introduction in Eq.~1! of the factor 11kr originates
from the presence of the EIP and allows us to take i
account many particle quantum effects. In fact, the transi
probability from the sitex to x8 is defined asp(t,x→x8)
5r (t,x,x8)r(t,x)@11kr(t,x8)# with r (t,x,x8) the transi-
tion rate. The transition probability depends on the parti
populationr(t,x) of the starting pointx, and also on the
populationr(t,x8) of the arrival pointx8. For k5” 0 the EIP
holds and the parameterk quantifies how much the particl
kinetics is affected by the particle population of the arriv
point. If k.0 thep(t,x→x8) introduces an inclusion prin
ciple. In fact the population at the arrival pointx8 stimulates
the transition, and the transition probability increases linea
with r(t,x8). In the casek,0 the p(t,x→x8) takes into
account the Pauli exclusion principle. If the arrival pointx8
is empty,r(t,x8)50, and thep(t,x→x8) depends only on
the population of the starting point. If the arrival site is pop
lated 0,r(t,x8)<rmax, and the transition is inhibited. Th
range of values the parameterk can assume is bounded b
the condition thatp(t,x→x8) be real and positive, a
r (t,x,x8) is. Thus we conclude thatk>21/rmax.

The form of the nonlinearityW(r,j) in Eq. ~1! is imposed
by the continuity equation~4!, while the form ofW(r,j) is
imposed by the requirement of the canonicity of the syste
The Hamiltonian density of the system~1! is given by

H5
\2

2m
u“cu21U

EIP
1Vr, ~7!

being

U
EIP

5kr2
~“S!2

2m
, ~8!

the nonlinear potential introduced by the EIP. In Ref.@27# it
has been shown that the system~1! admits one-dimensiona
solitons.

Following the standard procedure of the linear quant
mechanics, we define the quantum velocityv throughj5vr.
Taking into account Eq.~5! and writing c in terms of the
hydrodynamic variablesc5r1/2exp(iS/\), we have
02610
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v5~11kr!
“S

m
. ~9!

The quantum velocity can be expressed in terms of
Clebsch potentialsS,l,m throughmv5“S1l“m. It results
that the EIP imposes the choicel5kr and m5S for the
Clebsch potentials. Now, we define the vorticityv of the
system, throughv5“3v and obtain

v5
k

m
“r3“S. ~10!

From Eq. ~10!, it results that Eq.~1! describes a vorticose
system. In the present contribution, we will consider the p
nar, static vortex solutions of Eq.~1! in the casek52j
,0, when EIP is reduced to an EP. By introducing the po
coordinatesr 5Ax21y2 andu5arctan(y/x) in the plane, we
search for solutions of Eq.~1! in which S5S(u) and r
5r(r ). The continuity equation imposesS5\nu and con-
sequently we writec as

c~r ,u!5r~r !1/2einu. ~11!

The parametern must be integer in order to makec, given
by Eq. ~11!, a single value function. In the following, we
impose*rd2x5N, and thereforer(`)50. Let us note that
Eq. ~1! is not Galilei invariant@28# so that traveling solutions
cannot be obtained by boosting static solutions of Eq.~1!.

The quantum velocityv for the vortices~11! becomes

v5
\

m

n

r
~12jr!êu , ~12!

whereêu is the unitary vector orthogonal to the position ve
tor r5(x,y). After integration of Eq.~12! on the circleg

`

with center at the vortex core and with a radiusR→`, we
obtain the following relevant property:

m R
g

`

v•dl52p\n, ~13!

which justifies the name of vorticity indexn. The vorticity
v5vêz of the system is given by

v5
2p\n

m
d2~r!2j

\

m

n

r

dr

dr
, ~14!

and taking into accountr(`)50, it is easy to verify that the
total vorticity depends exclusively on the behavior of t
vortex core

E vd2x52pn
\

m
. ~15!

The definition of the vorticityv5“3v, imposes the relation

E vd2x5 R
g

`

v•dl, ~16!
6-2
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which can be easily verified by comparing Eqs.~13! and
~15!.

The angular momentum of the vortex, which is a vec
orthogonal to the vortex plane, can be calculated as m
value of the operatorL̂z52 i\]/]u and assumes the follow
ing quantized value:

Lz5nN\, ~17!

which does not depend on the parameterj.
We can calculate now the complex nonlinearityW1 iW

in Eq. ~1! for the vortex given by Eq.~11!. The nonlinearity
becomes a real one and Eq.~1! reduces to

i\
]c

]t
52

\2

2m
Dc2

\2

m

jn2

r 2
rc1Vc. ~18!

Equation~18! contains a nonlinearity very close to the one
cubic NLSE and describes a canonical quantum system
a Hamiltonian density given by Eq.~7!, where the nonlinear
potential introduced by the EP assumes the form

U
EP

52
\2

2m

jn2

r 2
r2. ~19!

As regards to the spatial shape of the vortexr5r(r ), we
insert Eq.~11! into Eq.~18!, and obtain the following secon
order ordinary differential equation:

1

rr

d

dr S r
dr

dr D2
1

2 S 1

r

dr

dr D
2

2
2n2

r 2
~122jr!2

4m

\2
V~r !50.

~20!

In the following, we are interested to study the free vortic
V50. After introducing the dimensionless variable

z52n log
r

r n
, ~21!

wherer n is an arbitrary constant, Eq.~20! becomes

2

r

d2r

dz2
2S 1

r

dr

dzD
2

12jr2150. ~22!

Now we consider the auxiliary functiony(r)

y~r!5S 1

r

dr

dzD
2

, ~23!

which, taking into account Eq.~22!, obeys the differential
equation

dy

dr
1

y

r
2

1

r
~122jr!50. ~24!

The functiony(r) after integration of Eq.~24! assumes the
form
02610
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y~r!5
a

r
112jr, ~25!

beinga an integration constant. Combining Eq.~23! and Eq.
~25!, we arrive at the following first order ordinary differen
tial equation for the shape of the vortex:

S dr

dzD
2

5ar1r2~12jr!. ~26!

All the physical solutions of Eq.~26!, whatever the value of
the parameteraPR, must be nonsingular, non-negative, a
normalizable.

The HamiltonianH5*Hd2x of the system can be calcu
lated starting from Eq.~7! and the expression~19! for UEP:

H5
\2n2

m E Fa

2

1

r 2 1
1

r 2
r~12jr!Gd2x. ~27!

We must choosea50 in order to have a finite value of th
Hamiltonian. After integration on the variableu, we obtain
the following simple expression for the Hamiltonian:

H52pn\E
0

`

jdr , ~28!

being j 5(\n/mr)r(12jr) the value of the currentj5 j êu
given by Eq.~5!. Finally, also the differential equation fo
the vortex shape assumes a very simple form

S dr

dzD
2

5r2~12jr!, ~29!

and can be easily integrated, obtaining the vortex profile
an explicit form

r~r !5
4

j F S r

r n
D n

1S r n

r D nG22

. ~30!

Therefore, the wave function of the vortex becomes

c~r , u!5
2

Aj
F S r

r n
D n

1S r n

r D nG21

exp~ inu!. ~31!

The free parameterr n , which absorbs the integration con
stant related to Eq.~29!, can be calculated from the norma
ization condition 2p*0

`r(r )rdr 5N and assumes the value

r n5
unu
2p
AjN sin

p

unu
, ~32!

where n is an integer number withn>2 in order to have
normalizable profiles for the vortices. The two vortex corr
sponds to the ground state of the system. The parameter n
represents the distance from the vortex core to the poin
which r assumes its maximum values:r(r n)5j21. We
have, ;r>0 that 0<r<j21, in agreement with the EP
From Eqs.~14! and~30! we obtain the following expression
for the vorticity:
6-3
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v5
2p\n

m
d2~r!2

8n2\

mrn
2 S r

r n
D 2(n21)F12S r

r n
D 2nG

3F11S r

r n
D 2nG23

. ~33!

Figure 1 shows the plot of the dimensionless quantum ve
ity n85nmr2 /\ with r 25AjN/p, obtained by combining
Eqs. ~12! and ~30!, versus the dimensionless distance fro
the vortex corer 85r /r 2 for the vortices withn52,4,6,8,10.
We observe thatv is equal to zero forr 5r n wherer reaches
its maximum value. Figure 2 reports the behavior of the n
singular part of the dimensionless vorticityv85vmr2

2/\,
given by Eq.~33! for the same vortices of Fig. 1. Figure

FIG. 2. Plot of the nonsingular part of the dimensionless vor
ity v85vmr2

2/\ with r 25AjN/p versus the dimensionless dis
tance from the vortex corer 85r /r 2 for the vortices with n
52,4,6,8,10.

FIG. 1. Plot of the dimensionless quantum velocityn8
5nmr2 /\ with r 25AjN/p versus the dimensionless distance fro
the vortex corer 85r /r 2 for the vortices withn52,4,6,8,10.
02610
c-

-

shows the dimensionless profilejr versusr 8 for the same
vortices of the previous figures. Finally, a 3D representat
of the profile jr for the ground vortexn52 in the 2D-
dimensionless space: (x85x/r 2 , y85y/r 2) is reported in
Figure 4.

The energyE5H of then vortex can be calculated easil
by substituting Eq.~30! into Eq. ~28! and performing the
integration

E5unu
\2k2

2m
, k25

8p

3j
. ~34!

The energy of the system results to be quantized and
energy spectrum lower bounded.

We recall that the family of the vortices~30! is related to
the vorticesr

JP
(r ) of Ref. @12# throughr(r )}r 2r

JP
(r ). We

remark that the vorticesr
JP

(r ) are obtained as self-dua
static solutions of a Chern-Simons model and correspon
the same energy state with energy equal to zero. On

-

FIG. 3. Plot of the dimensionless profilejr versus the dimen-
sionless distance from the vortex corer 85r /r 2 with r 25AjN/p
for the vortices withn52,4,6,8,10.

FIG. 4. 3D representation of the dimensionless profilejr for the
ground vortex n52 in the 2D-dimensionless space: (x8
5x/r 2 , y85y/r 2) with r 25AjN/p.
6-4
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contrary, for the vortex family~30!, we have that any vortex
corresponds to a different state of the system whose ener
given by Eq.~34!.

We conclude by noting that very recently@30#, it has been
considered a generalization of the present model~describing
neutral particles that obey the EIP! in the cases of nonrela
tivistic charged particles. In this modified model the mat
field obeying the EIP is minimally coupled to a gauge fie
whose dynamics are described within the frame of
Chern-Simons picture. The model is a canonical one
E

d,

tte

M

et

.

ys

02610
is
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d

admits self-dual static nontopological vortex solutions w
zero energy and linear momentum. The expressions of
main physical quantities associated to these solutions are
tained. The electric charge and the angular momentum
derived analytically, while the shape, together with the el
tric and magnetic fields of the vortex, are obtained nume
cally. This model can be considered as a continuous de
mation of the Jackiw and Pi one@12#, performed by the
parameterk that takes into account the EIP.
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@10# I. A. Ivonin, Zh. Éksp. Teor. Fiz.112, 2252~1997! @JETP85,
1233 ~1997!#.

@11# C. Josserand, Y. Poemean, and S. Rica, Phys. Rev. Lett75,
3150 ~1995!.

@12# R. Jackiw and S.-Y. Pi, Phys. Rev. Lett.64, 2969~1990!.
@13# I. V. Barashenkov and A. O. Harin, Phys. Rev. D52, 2471

~1995!.
@14# L. A. Abramyan, V. I. Berezhiani, and A. P. Protogenov, Ph

Rev. E56, 6026~1997!.
.

r

.

t.

.

@15# M. Hassaine, P. A. Horva´thy, and J.-C. Yera, Ann. Phys.263,
276 ~1998!.

@16# N. Papanicolaou and T. N. Tomaras, Phys. Lett. A276, 33
~1993!.

@17# G. N. Stratopoulos and T. N. Tomaras, Phys. Rev. B54, 12 493
~1996!.

@18# G. E. Uhlenbeck and L. Gropper, Phys. Rev.41, 79 ~1932!.
@19# G. Gentile, Nuovo Cimento17, 493 ~1940!.
@20# H. S. Green, Phys. Rev.90, 270 ~1953!.
@21# O. W. Greenberg, Phys. Rev. Lett.64, 705 ~1990!; Phys. Rev.

D 43, 4111~1991!.
@22# F. D. M. Haldane, Phys. Rev. Lett.67, 937 ~1991!.
@23# G. Kaniadakis and P. Quarati, Phys. Rev. E49, 5103~1994!.
@24# L. P. Kadanoff, Statistical Physics: Statics, Dynamics, an

Renormalization~World Scientific, Singapore, 2000!, p. 135.
@25# T. D. Frank and A. Daffertshofer, Physica A292, 392 ~2001!.
@26# G. Kaniadakis, Phys. Rev. A55, 941 ~1997!.
@27# G. Kaniadakis, P. Quarati, and A. M. Scarfone, Phys. Rev

58, 5574~1998!.
@28# G. Kaniadakis, P. Quarati, and A. M. Scarfone, Rep. Ma

Phys.44, 127 ~1999!.
@29# H.-D. Doebner and G. A. Goldin, Phys. Rev. A54, 3764

~1996!.
@30# G. Kaniadakis and A. M. Scarfone, Physica B293, 144~2000!.
6-5


